IC4262 Term Project – KWIC Design

[image: image1.wmf]
IC 4262

 Software Architecture and Design

KWIC Design and Implementation:

Project Report

Group
: Good Luck (11)

Students
:
Qi Xinzhi 93-6722M-13

Zhang Yi 94-6502X-13

Wang Hao 94-6622M-13

Zhao Xiangpeng 94-6535W-13

 Date
 :
October 1, 1997
1. Introduction
As described by Parnas, “The KWIC index system accepts an order set of lines; each line is an ordered set of words, and each word is an ordered set of characters. Any line may be ‘circularly shifted’ by repeatedly removing the first word and appending it at the end of the line. The KWIC index system outputs a listing of all circular shifts of all lines in alphabetical order.”[1]

KWIC, which can be implemented as a small system, is widely used as a teaching device in software engineering. Meanwhile, practical instances of it are widely used by computer scientists, like the “permuted” index for the Unix Man pages.

In this project, the following four different architectural solutions to KWIC are emphasized.

i. Main program/subroutine style

ii. Object-oriented style

iii. Implicit invocation style

iv. Pipes and filters style

Our main objectives are:

· Design, implement and document four versions of KWIC systems as mentioned above.

· Maximize the reuse across all four versions and, possibly, in other similar systems.

· Analyze the possible variations and future changes for each version.

In next chapter, we outline the initial project plan and actual project schedule. In chapter 3, we analyze possible variations and future changes in KWIC system. In chapter 4, we present our uniform software description conventions. Then we describe each version of the KWIC system in chapter 5. We conclude this report by evaluating four versions of KWIC system and describing our findings in chapter 6.

2. Project Plan

This is a group project. Each member focuses on one style and all of us share our ideas with each other across different styles. The work partition is as follows:

· Zhang Yi ,

Main program & subroutine style

· Qi Xinzhi ,

Object-oriented style

· Zhao Xiangpeng ,

Implicit Invocation Style

· Wang Hao ,

Pipe and filter style

Every member is expected to :

1. understand the KWIC system,

2. understand the individual problems faced by different styles,

3. discussion to reach the consensus, and

4. code KWIC system in respective style

The initial plan and actual plan is as:

Task
Planning Date
Actual Date

1. Evaluate possible variations and future changes

2. Decide the reuse strategies
By August 22
By August 22

3. Confirm architectural description conventions
By August 29
By August 29

4. Complete main program style
By September 06
By September 06

5. Complete OO style
By September 10
By September 10

6. Complete implicit invocation style
By September 29
By September 29

7. Complete pipe-filter style
By September 20
By September 20

8. Complete final report
By October 6
By October 6

Figure 1: Project Plan

3. Possible variations and future changes for KWIC
With consideration of possible design variations and future changes, a system can be built with maximum reusability and minimum code changes in the future. We find the following variations and future changes of KWIC at design level:

1. Changes in processing algorithm. For example, line shifting can be done on each line as read from input, or all the lines after they are read, or a block of lines.

2. Changes in presentation order. For example, KWIC system may display the alphabetized index in ascending or descending order.

3. Changes in I/O format. For example, the word separator and the line separator of input may change from space and carriage return to comma and pipeline symbol.
4. Enhancement to system function. For example, noisy words may be required to be removed prior to shifting. User may require interactive processing as well.
5. Adding new functions. For example, a function to send text output to the sound playing device may be added into KWIC system for those blind people.
6. Changes in performance requirement. For example, users may want to have an option to run the individual shifting or sorting subsystem for testing purpose.
7. Requirement for reuse. For example, developers may want to reuse the sorting function in the development of other projects.
8. Changes in platform. Resource management and system function call may vary across different platforms. For example, thread creation/destruction function syntax is different for Posix (for Unix) and for Windows.

9. Changes in flow of program. The timing sequence of input, shift, sort and output may vary. User may require modules to run in parallel to improve efficiency.

10. Requirement for network access. KWIC can be standalone. But user may also require KWIC running at a WEB server accessible for network users.

11. Change of reuse strategy. The functions (objects) of KWIC system may be reused via a network (e.g. RPC) or reused locally.

The implementation strategies of KWIC may also be changed.

1. Changes in data representation. For example, lines, words, and characters can be stored in various data structures.

2. Changes in use of library functions. For example, to manipulate files, standard C library or file control library may be used.

3. Changes in the use of resource. For example, to implement the synchronization in event manager, shared memory or thread mutex may be used.

4. Software Architecture Description Conventions
We use architectural description conventions to express architectural components and interactions between components. The same set of notations for different styles can improve communications between software developers and facilitate software reuse.

In our diagram-based notations, boxes represent components in software architecture and lines represent connections between components, or interactions between software components. Figure 2 summarizes our software architecture conventions for components and figure 3 presents the conventions for connections.

Component category
Description Convention

Component description

Software modules

?=X : Function

?=F: Filter

?=C: Class

?=M: Member of class

Shared collection of persistent structured data

Database

File System

Manager which encapsulates state and closely related operations

 Abstract data type

Event managers,

Controller which governs time sequences of others events

Scheduler

Synchronizer

Links which transmits information between entities

 Communication link

Figure 2:
Architectural Notation Convention for Components

The boxes are attached with labels, which identify specific architectural components.

Architectural notations
Connector descriptions

Procedure call

Dataflow

Implicit invocation

Message passing

Instantiation

 Owner-member relationship

Figure 3: Architectural Notation Convention for Connectors

Each interaction, or connector, is also attached with a label which can contain certain data. For example, the labeling of procedure call can contain the parameters that to be passed to that procedure.

Support for Composition

The components can be composed of smaller components, which in term is composed of even smaller components. This recursive nature of components makes the display of components difficult. To ease displaying a big component, we use a separate diagram to show the detailed architecture of components.

Connectors are not treated as the same first class entities as components due to the complexity. The connectors are primitive type, and can not be composed of smaller parts.

Logial view/Physical view

We define logical view of a system as a view describing the logical flow of the system and capturing all possible variations and future changes of the system. The physical view is defined as a viewpoint which presents the detailed system flow and system assumptions/constraints.

Function and Data Dictionary.

We describe the main functions, classes and important data in textbox.
5. KWIC System Design
5.1 Main Program and Routine Style
a) System requirements

In main program/subroutine style, all the requirements of original proposed KWIC are met. Other than that, it enjoys intuitive benefits come from the style itself. Such benefits are:

1. Easy to code and understand: program is coded following the intuitive divide-conquer decomposition. Coding is straightforward. Understanding of program itself is easy.
2. Efficient data representation: Data are shared by all modules/subroutines.
3. Isolated computational aspect: Distinct computational aspects are separated in all the modules. This is good for development because errors and bugs can be easily fixed within modules if necessary.
b) Software architecture

In main program/subroutine style, there is a master control that controls the flow of program. The master invokes the 4 modules input, shifter, alphabetizer, and output in order. Each model will perform their own computation on the shared data and leave the data in required format for processing or output it to user. There are certain assumptions prior to execution of individual modules. For example, when output is called, index of data must be there and presumably sorted in alphabetical order. This means modules have assumptions about status of data.

The architecture of KWIC in main program/subroutine style is best illustrated using diagram. The following diagram provides a clear demonstration. It follows the convention mentioned in chapter 4:

Figure 4: Physical view of KWIC Main program/subroutine style

c) Program documentation and code

1. Implementation guideline:

The intuitive decomposition of the proposed problem using main program/subroutine style leads to traditional implementation. Simple data structures are used to represent data for processing. Traditional functions are used to implement each module mentioned above.

1.1) Data structure:

Raw data in input medium is simply text file. The data structures used to represent it are described as follows:

{X}*: 0 or more occurrences of x

{X}?: ? number occurrences of x

Data store is used to store the actual data. Index is simply an array of numbers that used for indexing, sorting, and output. The actual implementation is up to programmer's own decision.

1.2) Modules:

Four modules: input, shifter, sorter, and output are implemented as C++ functions. They are illustrated as follows:

1.3) Main program, the master control:

The master control is simply the main program that calls all subroutines in turn. All data structures should be properly initialized prior to all function/subroutine calls. Programmers have to decide how to actually implement it using any programming language, in our case, C++.

2. Correspondence between architecture and program

The correspondence is really simple in main program/subroutine style. The main program is the master control. Four functions are the four corresponded modules in the diagram. Data structure “ dataStore” and “Index” correspond to what we have for the storage in the diagram as well. Actually, we can say that the diagram is both logical and pfhysical due to its nature. This is another benefit this style has.

d) Summary

In general, the requirements of KWIC are all met using this style of decomposition. Reuse can be achieved at functional level. Data structures can also be reused when function(s) is reused.

· Reusability

Our practice shows that it is extremely easy to reuse main program/subroutine style in OO style because all functions and data structures can be shared.

It is not natural to reuse it in implicit invocation style. This is because the flow of program is not directly controlled in such style. Event handler is rather independent identity than functions. The default action is predefined and no further knowledge is required. Whereas functions need parameters and have certain assumptions on data have.

It is hard to reuse it in pipe and filter style. This is because the data is not shared in such style. Each filter keeps its own copy of data and process on that data. However, in main program/subroutine style, data is shared and processed by each module in turn.

· Ability to adopt variations and future changes

Changes in function can be easily adopted since computational aspects are confined within function.

Performance requirements can be easily adjusted. Simple programming style provides a lot of opportunities to improve efficiency. Actually, by doing such style, we already mean a pretty efficient program.

Platform change doesn’t create many problems, since this style rely little on platform. Other than file accessing, no system dependent function is needed.

Changes in processing algorithm will affect all modules. Since this is assumption made by all of them.

Changes in data representation will definitely affect all because data is shared.

Parallel execution is hard to achieve using main program/subroutine style. Parallel execution requires the master control to do a lot more than just calling subroutines to their jobs in sequence.

Network access seems not difficult to do. In such case, raw data can be from a socket instead of text file. Output can be sent to socket as well. Additional care should be taken for server to make sure concurrent access when necessary.

I/O format changes can be confined within I/O functions. So, it is not hard to achieve.

After analyzing main program/subroutine style, we can conclude that it is a good candidate for quick implementation and efficient requirement.

5.2 Object-Oriented Style

(a) Software Requirement

As described before, a KWIC index system accepts an ordered list of lines, circularly shifts them, and then outputs a listing of all circular shifts of all lines in alphabetical order.

This version of KWIC system adopts object-oriented approach, which is implemented in C++. When the input is read, the system constructs an object of defined class, initialize the data associated with it. Then the member functions are called to generate the desired output.

(b) Software Architecture
(i) Logic View
Class DataStorage

Class Sorter

Class Shifter

Figure 5. Logic View of OO style system

Class

Involve other class’s method

Member Function

Member Data

Figure 6.
Some Conventions Symbols

(ii) Physical View

Figure 7.
Physical View

Involve member data in a Method call

Figure 8.
More Convention Symbol

(c) Program Document and Code

(i) Guidelines

1. Maximize reuse of software components across different versions of KWIC systems.

· Fully make use of data structures and functions from other versions of implementation to maximize reuse.

· Clearly define the member functions in the class to maximize the reusability.

2. Make the design and implementation as simple as possible.

3. Read input data from file or from standard input, and display the result in standard output (screen).

4. Define Shifter and Sorter as separated classes to enhance reusability.

5. Make the control main program as explicitly and simply as possible.

(ii) Correspondence between architecture element and program

1.
Explanation of Member Data in Class DataStorage

The text is stored as an array of characters. We maintain both the original text and the text after shifted or sorted. We also keep the number of lines generated after the text is shifted.

We keep track of the process by keeping the array workingLine[4], while

workingLine[0] stores the number of lines read,

workingLine[1] stores the number of lines shifted,

workingLine[2] stores the number of lines sorted, and workingLine[3] stores the number of lines displayed.

2. Components Dictionary

(A). Class

(i) Methods

(A)
Class Datastorage

(B) Methods

Class DataStorage

Class Shifter

a

Class Sorter

(d) Summary

In general, the system requirements are fulfilled. The system generates correct output given input, within a reasonable ideal running time. We focus on the discussions of the following few points.

(i) Design Quality Factors

· This system reuse some software components defined in the systems of other styles. Meanwhile, the system clearly defines the classes, and provides a neat data structure and interface so that the reusability is enhanced. Every class can be reused separately. For example, Class Shifter and Sorter are reused by Pipe and Filter style system and Implicit Invocation style system.

· This OO system is good for change in data representation, algorithm and enhancement of the system, as long as the interface remains unchanged. For example, if we want to implement the class Sorter in other way (e.g. using other algorithm), it will not affect the overall system.

· With some assumptions, like the maximal number of words per line,

the system is simple in design and implementation. It can be observed from the codes attached.

· The program is documented.

(ii) Strengths of object-oriented approach

· The implementation details, including design decisions and data structures, are hidden from users. It makes changes of data representation or algorithm, and enhancement in system functions or requirements easy to implement.

· Change of platform won’t affect the system, as long as the operating system supports C++.

· Inheritance and some other features of OO approach help in system enhancement and component reuse.

· Localization of data to the object defined helps to achieve the run time efficiency.

(iii)
Shortcomings of object-oriented approach

· Changing object’s interface may have impact on the system. For example, if the Output function needs a parameter to specify the output media, we need to change whenever the output function is called. It is not so obvious here since the system is simple. However, it may be a big problem is a system is large and complicated.

· Control is not explicit. The only way is to call the member functions to control the system. So it is impossible to do anything to the object without public functions provided.

(iv) Experience

· Learn to design with reuse and design for reuse

We try to maximize the reuse across our four versions of KWIC systems, which is required in this project. For example, object-oriented version system reuses the data structure and functions defined in the main program and routine system. What I understand is, these two styles are similar here, since it is a simple system. We don’t need to use some OO features, like inheritance and polymorphism. It contributes to the extreme success of reuse.

The lesson I learn form this project is, reusability is efficient, but it may not be easy to be implemented without careful plan and cooperation. Nevertheless, if “design for reuse” and “design with reuse’ are really achieved, lots of manpower and time can be saved.

· Lean to work in a team

Cooperation among team members is especially important in this kind of project. From the starting, we have lots of discussions, scheduling and hard working. Finally the result is quite ideal. We got the job done as expected.

5.3 Implicit Invocation Style
a) System requirements

The event-driven nature of implicit invocation style should be able to provide numerous advantages to the KWIC system compare to those systems implemented in other styles. The advantages includes:

1. Ease of functional enhancement. The implicit invocation style provides the system with a tool abstraction environment. This tool abstraction mechanism permits the system to be enhanced incrementally and modifications to be developed independently , even when the changes can not be achieved by traditional data abstraction techniques.
2. Encapsulation of data. The data is “active” in the implicit invocation style. And the representation of the data is more abstract. Accessing and modification of data is transparent, and encapsulated. The modification of data representation will not cause the corresponding change of the data processing modules.

3. Software reusability. There are two set of tools that can be reused. One is the set of tool abstraction management mechanisms. For example, to implement the implicit invocation style, event manager is commonly used. The event manager provides a general way of accept event triggering, invoking the corresponding event handlers and registering the new events. If the event manager is implemented sufficiently general , it is very likely this event manager can be reused across different systems. The other reusable assets for implicit invocation style is the set of event handling toolies, which access the data and process the data upon receiving the triggering of the data updating. These set of toolies access the data through the standard interface of the abstract data and can be reused even the data representation has been changed.

These distinct requirements of implicit invocation style will be satisfied only when the system is carefully designed and the system designers keep these requirements in mind from right the beginning of the system development.

b) Software architecture

High level architecture of implicit invocation style

The implicit invocation style de-couple the modules by the event driven paradigm. On the occurrence of any event , and event triggering signal is broadcasted to all the components in the system. The components interested in the event will be invoked to do some further processing. Although an event manager is not a must in an implicit invocation style, addition of event manager definitely has some advantages. Event manager provides an centralized event management points. With an event manager, the event is sent to event manager instead of broadcasting to all the software modules, which is difficult and inefficient to implement in most of systems. And introducing an event manager ease the event-handlers from knowing the event management mechanism. The sole task left to event-handlers is the processing of individual event. This event-driven paradigm produces more reusable software modules. The event-handlers are not coupled, rather they are independent software components, which are easy to reuse.

Our KWIC system consists of the 3 major software components : event-manager, event-handlers, data. And there are 4 event handlers needed for our KWIC system. They are input handler (input), circular shift handler(shifter) , alphabetize handlers (sorter) , and output handler(output). Each event handler responds to certain events , accesses the data through the abstract interface, then does some processing. Figure 8 depicts the logical structure of KWIC system. Please refer to chapter 4 for the architectural description conventions.

Figure 8: logical view of KWIC in implicit invocation style
Interactions of components

The interaction among the event managers, event handlers, abstract data is driven by the event. Upon the updating of the data, some event will be triggered. Example of such events includes :
Input finish input , shifter finish shifting, sorter finish sorting, output finish output. Table1 lists all the possible events and its respective invoking of other event -handlers.

When the event manager receive the events, it invokes the corresponding event-handler defined in the event invoking table. The corresponding event handlers then access the abstract data through some standard interface of the abstract data. All the events are managed by the event manager explicitly. The event management is through event manager and there is no explicit broadcasting mechanism imposed by the general implicit invocation style. But since the event manager is shared by all the event handlers, accessing the event manager has the same effect of broadcasting.

Event Name
Event description

corresponding actions

INPUT_FIN
input finish one line of input
invoke shift

INPUT_NOMOREDATA
End of one session of data input
End of program

SHIFT_FIN
Finished shifting after one incremental line input
invoke sort

SORT_FIN
finished sorting after one incremental line input
Invoke output (or delay until no more input)

OUTPUT_FIN
Finished producing output for incremental line input
Invoke another prompt of input

Table 1: Event name and actions
c) Implementation

Multi-thread implementation

This section suggest some implementation guideline of the KWIC system in implicit invocation system. The implementation is very system dependent. We will focus our discussion on a multi-process operating system like UNIX. Because with the implicit invocation style, to loose the coupling between modules , it is preferred that the major components of the system are implemented as separate processes or threads. Although it is not absolutely impossible to implement in a single process OS like DOS, it will be very awkward with the limited system capability.

The distinction of process and thread lies in the sharing of the memory and process state. In multi-process environment , the parent process and child processes have different process tables. Accessing to the memory of another process is not possible. This makes sharing difficult. If one process wants to pass data to another process, explicit message passing or share memory allocation is require. The advantage of thread is its sharing of memory space. The parent thread and all the child threads share the same memory. In the multithread environment, call the same procedure in thread ,which access the same global variables , will have the same effect of calling the procedure directly. To simplify the programming effort, multithreading is suggested instead of multiprocessing.

Event triggering can utilize message passing or shared memory. Reception of message by the event manager will cause the event manager invoke corresponding actions. And the sending message to the event handler triggers the event. For the shared memory, the same paradigm applies. The changing contents of the shared memory means triggering of the event.

It is inevitable to synchronize the thread or process in multiprogramming. To enforce mutual exclusion problem and synchronization, some Inter-Process Communication mechanisms must be used. In the context of UNIX, semaphores , messages , shared memory , and socket etc. are available to do IPC.

In the following sections , we will look at how the event manager, event handlers ,and abstract data are implemented .

Event Manager

Event manger plays the central role of tool abstraction mechanism. In general it should perform the following tasks : event reception , event queuing, event dispatching , event handler invoking, event registration ,etc. The implementation of event registration can be very involved, which may need some preprocessing as described by II.2 of reference. So we will avoid discussion of event registration here.

Figure 2 shows the diagram of event manager as implemented by our project group. There is a global event queue in the system, which is accessable by all the event handlers in the system. The event handlers put the event into the event queue. Event manager constantly dispatch event from the event queue. Dispatching of event can be predefined by some preprocessing rules and may not following the first time first serve rule. After dispatching the event ,the event manager invoke the corresponding event handler. When event manager decides which event hander to call, it can either look up from an event invoke table or by hard coding. For simplicity we adopt the hard code strategy in this project.

The sample C code for event manager may looks like :

while (eventToProcess = DispatchEvent()) {

ProcessEvent(eventToProcess) ;

}

Access to event queue must be synchronized with all the event handlers. When the event manager is dispatching event from the queue, other threads who want to add event to the queue must be blocked.

Figure 5: Event manager operations
Event Handlers

Event handlers are implemented by separate threads. There are 4 event handlers for the KWIC system : input , shift , sort , output. These handler can be simple wrappers for corresponding procedure in main/routine style , or methods in the OO style. For the actual implementation ,we adopt the reuse of the OO style for its encapsulation property. Example Code segment for input event handler will looks like :

void *InputHandler (void * para) // Required parameters are pass by

 // para

{

while (the event manager has order to input data) {

data.input() ;

SignalEvent (INPUT_FIN, time) ;

wait for event manager ;

}

}

For simplicity , the event handler thread perform the event triggering by SignalEven(), which generates an event – increment the corresponding semaphore --when it finished doing some operation.. For example , when the input handler get one line of input from the user, the input thread will generate an INPUT_FIN event. This event is sent to the global event queue, where it will be picked up by the event manager.

Abstract Data

For the main part of the abstract data we reuse the KWIC OO style. With one modification, the original OO style only input lines from a file and perform a batch processing. The new abstract data can perform incremental input , i.e. user are prompt to input data line by line. One drawback of reuse is that , no incremental shifting and sorting are implemented for this simple KWIC system. Without incremental shifting and sorting , the KWIC system will perform a total shifting and sorting for every line of data, which can be very inefficient for large data.

In our implementation the abstract data does not generates event directly. Rather the events are generated by the event handler when it finished processing. This is purely for ease of implementation and reuse of the original OO codes.

d) Summary

The KWIC system implemented in implicit invocation style employs an tool abstraction paradigm which can meets the general requirement of good software system design :

1. Maximize reuse of software components across different version of KWIC. Essentially the new implicit invocation style can reuse most part of other styles. The software modules which accomplish the data processing in the rest of styles --- procedures in main/routine style, data processing methods in OO style, filters in pipe and filters style – can be port to the event handlers with some simple wrapping .

2. Address future variations . The implicit invocation style address both the functional variation and data representation variation. Future functional change can be accomplished by adding new event handlers or modifying the existing event-handlers. Data representation variation will not change the most part of the system because the data are accessed by the abstract interface. Only the standard interface implementation need to be modified in the case of data representation changes.

The strength of the KWIC system in implicit invocation style is its easy adaptation of future functional change. The loose coupling between the event manager, event handlers , and abstract data maximizes the software components reuse.

Shortcoming of the KWIC includes in-efficiency and implicit processing order of the event handlers. The massive communication between event managers, event handlers and abstract data causes some additional overhead compared to other style, such as main-routine style. The processing of event handlers are implicit in responds to the event triggering. But this implicit invoking of event handlers can be eliminated if event manager can explicitly invoke all the relevant event handlers. In this way event handlers do not have the ability to respond to the events, rather they only can be invoked by the event handlers. But carefully design the event handler , we can eliminate the drawback of implicit invocation style.

5.4 Pipe Filter Style
a) Requirements

Besides the general functionality requirements of KWIC, the system in pipe-filter style should be able to handle variant size of data produced incrementally at each filter. Filters should also work simultaneously. This system should be easily shifted to a network environment. Moreover, shift and sort filters should be able to be reused individually. Porting of the system should also require least changes and remain maximum reusability.

b) Architecture
There are two types of software components: filters and pipes. Filters read a stream of data on input, transform data and produce a stream of transformed data on output. Pipes transmit data among filters. KWIC contains 4 filters: input, circular shift, sort and output.

· Input filter reads data from a input medium and puts streams on its outgoing pipe.

· Circular shift reads lines of characters from the incoming pipe, circularly shifts each line, and puts shifted lines on its outgoing pipe.

· Sort filter reads lines of characters from its incoming pipe, sorts lines by the alphabetical order, and puts the sorted lines on its outgoing pipe.

· Output filter reads lines from its incoming pipe, and print output on its outgoing pipe.

The following is the logic view of KWIC system architecture.

Figure 6: Logic View of KWIC System Architecture in Pipe-filter Style

· To achieve individual extraction of filters and portability of a network environment, We define an interface for each filter. This interface defines from where a filter gets input and where to place output. The I/O of a filter can be one end of a pipe. The I/O also be a file or terminal screen, which facilitates the individual extraction of filters. The I/O can also be a socket, which makes filters workable in a network. (Socket connection is the basis of network communication.)

· To support varying style of data production, i.e., if the data is generated line by line as it is read from input, or by several lines at a time, or after all the lines are read in, filter interface allows users to specify the size of basic data production unit in terms of lines.

· To ease porting of the system across different platforms, all the system-dependent functions are declared in such a syntax that is common to all platforms and the definitions of these functions can be implemented separately.

c) Program Documentation

 I) Implementation Guidelines
· No Assumption is made on the pipeline style. Filters may transmit data incrementally, as data is processed or transmit data only when the whole input data has been processed.

· Circular shift filter, sort filter, and output filter can be individually extracted. For example, by specifying an –s option, users can run sort filter to alphabetize a file. Input filter is not allowed to extract simply because the semantics of running an input filter alone is not clear.

 II) Correspondence between architectural elements and program
The physical view of KWIC system is visualized as follows:

Figure 7: Physical View of KWIC System Architecture in Pipe-filter Style

Filters

· We use threads (Unix Solaris implementation) to implement filters. Thus concurrent processing is enabled and the speed of KWIC system increases.

· Since thread functions are syntactically different among Unix, Windows and Mac OS, a set of general thread function declarations like thread creation/destruction are separated from their definition implementation. In other words, different implementation of threads across different platforms support for the same set of thread function declarations. In KWIC, we defined a Thread class. Its Unix version of class implementation is also provided. To port KWIC to Windows, developers can just supply the window version of class implementation without affecting the rest of the system (done via separate compilation).

· The shifter and filter threads reuse the Shifter and Sorter class as defined in Object-oriented style of KWIC system. The thread function reads in data from incoming pipe, create a new instance of Shifter/Sorter class with data passed in, and call the output function of the class object to produce data to outgoing pipe.

· Extracting individual filters means that redirecting a filter’s input/output file descriptor from pipe descriptor to user-specified i/o. For example, to extract sort filter, instead pass ss_pipe[0] and so_pipe[1] to sort filter (described in the above figure), we may pass stdin and stdout to it.
Pipes

· Unix pipes are used to implement pipes. A Unix pipe is an array of two file descriptors, the first is for input, the second is for output. Two functionally adjacent filters share one pipe.

· To port KWIC to a networked environment, the underlying network infrastructure can be virtually as pipe. In that case, a filter waits for incoming data by listening at a port, and on that port, the predecessor filter places data it produced. Therefore, when shifting standalone KWIC system to a network, we can pass two port numbers to each filter instead of passing Unix pipe file descriptor. We also have to provide a wrapper to each filter to handle socket connection setup and shut down. The constraint of port numbers is that the outgoing port number of a filter should be the same as the incoming port number of the successor filter.

· Filters can produce a block of data incrementally, block size m refers to the size of the block in terms of lines. Filters will repetitively get m lines from its incoming pipe, transform them and place the transformed data on its outgoing pipe. m ranges from –1 to a positive upper limit. m equals to 1 means filter produces data line by line as it is read from input. If m is set to –1, filter produces data after all the lines are read.

FilterInterface

· To ease customization of a filter, we define a class called FilterInterface. This class allows users to control incoming pipe descriptor, outgoing pipe file descriptor, block size of data production. Here is a structure of FilterInterface class.

·

Figure 8: Structure of Class FilterInterface

Main Control of KWIC System

· Users can run the KWIC system as a whole or run the shift, sort, or output filter alone. The main program reads user options. If as a whole, the main program will create 3 pairs of Unix pipes; each pair of pipe set up a dedicated channel between two adjacent filters. The main program will create filter interface objects, set the interface’s i/o file descriptor to the pipe descriptor, and initiate filter threads by passing interface objects. If running separate filter, the program will create the filter interface object, set the object i/o file descriptor to user-defined i/o descriptor and initiate the individual filter by passing the filter interface object.

· In the main program, users can set the size of data block produced by a filter by calling SetBlockSize() method of the filter’s interface object.

 III) Filter and Pipe Dictionary

1. Classes

 Sorter and Shifter classes : Please refer to Object-oriented style for details.
2. Filters

3. Pipes

d) Summary
4.1 How the system achieve the design quality factors.

· The system can handle different pipeline style by accepting variant data production block size.

· The system can handle different medium of input/output, regardless if it is a file or terminal by always viewing I/O of a filter as file descriptors.

· The system allows the individual extraction of filter by redirecting their pipe I/O descriptors to user-specified I/O.

· The system achieves concurrent processing. Threads are used for simultaneous processing and Unix pipes are used as a mechanism of synchronization among threads.

· The system remains the maximum reusability when porting to different platforms. This is achieved by creating a generic declaration for those platform-dependent functions used by the system and separating the system-dependent definition implementation from those declarations.

· The system allows shifting to network environment by replacing pipe file descriptor by port numbers and attaching a socket wrapper to each filer.

· The system reuses the Shifter and Sorter classes defined in Object-oriented style of KWIC. Thus reuse across different styles is nicely realized.

· The system facilitates customization of filters by supplying a FilterInterface object to each filter, which can be manipulated by users.

· The data flow of a filter is shown in following:

Figure 9: Data flow of Filter

4.1 Strengths and Shortcomings in respect to possible variations and future changes

Strength

· The pipe-filter style design maintains the intuitive flow of data processing.

· The design supports reuse. Each filter can function in isolation. New functions can be easily added to the system by inserting filters at the appropriate points in the processing sequence.

· It is amendable to modification, since filters are logically independent entities of the other.

· Filters can be used in standalone and networking applications.

Shortcomings
· It is hard to modify the design to support an interactive system. Filters share no persistent storage, making it hard for filters to cooperatively complete a task such as deleting noisy words from a line.

· Each filter must copy all of the data to its output port thus use space inefficiently.

Experiences

Design with reuse can be easily done. Design with reuse is to define your data structure more clearly and to provide more functions to manipulate data. Functions are hopefully ”reused” by others. Design for reuse is more difficult, as I carried on pipe-filter style of KWIC implementation. I found I had to carefully preempt the situations in which users want to reuse the system (the Filter, the Thread Object, the FilterInterface), and design a most generic data structure and functions to suit the requirements of all kinds of situations. Luckily function overloading is available in C++ which facilitates the design of reuse.

6. Conclusion

a) Comparisons of strengths and weaknesses of the four versions.
We find that main design and implementation of main program style is the simplest and easiest. This is because we have written lots of programs in this style and are very familiar and experienced in the development life cycle.

Object-oriented style provides very clear data structure. This is achieved by using the data encapsulation, class inheritance and class IS-PART-OF relationship which are OO features. Reuse of objects is much easier than reusing functions in main program style since we don’t have to care about how data is structured whereas reusing functions requires we have to supply the exact data structure as implemented in OO style.

Implicit invocation style achieves the best data decoupling without the expense of data isolation. Data becomes “active”. Event handlers operate on data and don’t care what the rest of handlers do. They get instruction from event manager, process data and generate events. Reuse of event handlers is very simple in the sense that the rest of handlers are not affected. Concurrent processing is also doable in this style.

Pipe-filter style also makes concurrent processing feasible. Filters can transform input data without waiting the completion of its predecessor. Reusing filters in a network

Environment is very easy. The drawback is that data is isolated and interactive processing of data is difficult to realize in this style.

b) Situation for using a particular style

Main program style is the best choice if a quick prototype of KWIC is required in the development life cycle. This is because this style is simple and straightforward for developers. Moreover, if reuse through network is needed, main program style is also suited since it has procedure-based structure and current RPC (Remote Procedure Call) technology support reuse via network.

OO style is well fitted into the situation of design for reuse. The OO features allow the object methods to be reused without worrying about the actual data structure (data encapsulation). Thus classes can be easily reused in a local environment. But reusing classes via a network is not generally feasible using the current technologies. CORBA helps the invocation of remote objects and is currently under development. We believe in the near future when CORBA becomes a de-facto of ROI (remote object invocation), OO style will become better choice for use.

Implicit invocation style may be the only good choice if interaction with users is needed and CSCW (Computer Supported Cooperative Work) is introduced into KWIC. A group of users may sit in front of different computers and work with a subsystem of KWIC. Since flow of process in implicit invocation style is done by event generation and handling, this can be well used in CWCW applications.

Pipe-filter style works the best for off-line processing, i.e., interactive work is not required.

C) What can be reused and what cannot be reused.

Pipe-filter can reuse the Sorter and Shifter classes in OO style but cannot reuse the DataStorage class since data is isolated in pipe-filter style.

Implicit invocation style can reuse DataStorage class in OO style as a whole since data can be shared. Actually this style reuses everything in DataStorage class and achieves the best reusability.

Main program style can be reused by other style but it cannot reuse anything from others. OO style can embed the data structure in main program style into its member data section and reuse the routines in main program style as its member methods.

c) Experiences

As we developed the project, we find design for reuse is much difficult than design with reuse.

?

 C

 FilterInterface

F

D

Master Control

Input

Circular shift

Alphabetizer

Output

Alphabetized index

Index

Data store

Output medium

Input medium

Index: <line#, word#>

Index[]: {Index}*

Word: String type

Line: {Word}*

Data store: {Line}*

Name: input

Type: subroutine

Parameters: dataStore

Input: text file in input medium

Output: dataStore contains actual data

Name: shifter

Type: subroutine

Parameters: dataStore, originIndex

Input: dataStore

Output: originIndex contains shifted index

Name: sorter (alphabetizer)

Type: subroutine

Parameters: dataStore, originIndex, sortedIndex

Input: dataStore, originIndex

Output: sortedIndex contains index for alphabetically sorted data

Name: output

Type: subroutine

Parameters: dataStore, sortedIndex

Input: both of parameters

Output: output shifted and sorted lines to output medium

M

SetInputFd ()

M

SetBlkSize ()

M

SetOutputFd ()

so_pipe[1] so_pipe[0]

ss_pipe[1]

 F

 Output Thead

 F

 Sort Thread

ss_pipe[0]

O	

Shifter

O	

Sorter

LineNum

Shift()

Sort()

Output()

DataStorage()

O	

DataStorage

Input()

or_text[][]

New_text[][]

NumOfLines

 H

Output

 H

Sorter

Event Manager

 H

Shifter

 H

Input

Abstract Data

Event Manager

Event

Event Queue

Event A

Event B

Event C

Invoke

H1

Invoke

H2

Invoke

H3

 F

 Shift Thead

 F

 Input Thead

is_pipe[1] is_Pipe[0]

 F

Data flow to a output medium

Pipes

Filter

Legend

sorted lines

 F

 Input

 F

 Circular shift

stream of lines

 F

 Sort

 F

 Output

shifted lines

M

 inputFd

M

outputFd

M

BlockSize

Legend

M

SetInputFd ()

 C

Class

Class member

Class Name	: 	Thread

Protected Variables: 	unsigned int ThreadID

:

Public Methods:	Thread() {};

~Thread() {};

/* Create a thread by passing thread attributes, and starting function with arguments. */

 int Create(const void *attr, void *

 (*start_routine)(void *), void *argu);

/* Wait for thread termination */

 		 virtual int Join(void* argu)

/* Get thread ID */

 unsigned int GetID();

Class Name	: 	FilterInterface

Protected Vairables :	int blkSize 	/* Data production block size */

			int inputFD /* input file descriptor */

			Int outputFd /* ouput file descriptor */

Public Methods:	 FilterInterface(const int in, const int out, const int size)

 			/* default input and output are stdin and stdout. */

 FilterInterface(const int size)

/* default blkSize is -1, i.e., whole block of file. */

 			FilterInterface()

 ~FilterInterface(){};

 /* Set and Get the size of data block */	

 			void SetBlkSize(const int newSize)

 			int GetBlkSize()

 	/* Set and Get input pipe file descriptor.*/

 	void SetInputFd(const int fd)

 int GetInputFd()

/* Set and Get output pipe file descriptor */.

void SetOutputFd(const int fd)

 int GetOutputFd()

Function: 		InputFilter

Parameter:		pointer to an FilterInterface object

Return:			none

Input from:		input stream as defined in FilterInterface

Output to:		output stream as defined in FilterInterface

Function: 		ShiftFilter

Parameter:		pointer to an FilterInterface object

Return:			none

Input from:		input stream as defined in FilterInterface

Output to:		output stream as defined in FilterInterface

Function: 		SortFilter

Parameter:		pointer to an FilterInterface object

Return:			none

Input from:		input stream as defined in FilterInterface

Output to:		output stream as defined in FilterInterface

Function: 		OutputFilter

Parameter:		pointer to an FilterInterface object

Return:			none

Input from:		input stream as defined in FilterInterface

Output to:		output stream as defined in FilterInterface

Variable: 		is_pipe[2]

Type:			Unix Pipe

Explanation:		pipe between input and shift filters

Variable: 		ss_pipe[2]

Type:			Unix Pipe

Explanation:		pipe between shift and sort filters

Variable: 		so_pipe[2]

Type:			Unix Pipe

Explanation:		pipe between sort and output filtes

Thread

Filter Interface

input

output

Text[][]

Text[][]

LineNum

Output()

Shifter()

Sorter()

Output()

Class Name	: 	DataStorage

Member Data	:	char or_text[][]; 		/* Original text*/

 					char new_text[][];	/* New text after shifted or sorted*/

 					int NumOfNewLines;	/* new lines after shifted */

 					int workingLine[4]; /* Current line being processed */

Methods	:	DataStorage();		/* Constructor */

 			int input(FILE *inFile, int blkSize); 	/* Read in data */

int Shift(int blkSize); 	/* shift the text */

int Sort(int blkSize, int cmp(void*, void*)); /* sort the text */

int output(int blkSize);	 /* output the result */

Uses		:	Class Shifter

				Class Sorter

Class Name	:	Shifter

Member data	:	char** text;		/* Array storing the text */

 					int lineNum;		/* Number of lines shifted*/

Methods	:	Shifter(char intext[][], char outtext[][], int NumofLines,

int StartingLine, int &NumofNewLines); /* Constructor */

void Output(int outfd);	/* Output text */

Used by	:	Class DataSotrage

Class Name	:	Sorter

Member data	:	char text[][];	/* Array storing the text */

 					int lineNum;	/* Number of lines sorted */

Methods	:	Sorter(char text[][], int NumofLines, int StartingLine,

int (*cmpRoutine) (const void *, const void *), int flag); /* Constructor */

 			 	void Output(int outfd);	/* Output text */

Used by	:	Class DataSotrage

Method Name	:	DataStorage

Class		:			DataStorage

Input		:			None

Output	:			None

Effect		: 	Construct an object of class DataStorage

Method Name	:	Input

Class		:	DataStorage

Input		:	File descriptor and size of block to be read

Output	:	Integer 1 if there is more lines to be read

				Integer 0 if all lines have been read

Effect		: 	The contents of the file (or the standard input)

are read and stored for the object.

Method Name	:	Shift

Class		:	DataStorage

Input		:	Size of block to be shifted

Output	:	Integer 1 if there is more lines to be shifted

				Integer 0 if all lines have been shifted

Effect		: 	Shift the data member of an object with given

 				size

Method Name	:	Sort

Class		:	DataStorage

Input		:	Size of block to be sorted and the sorting algo

Output	:	Integer 1 if there is more lines to be sorted

				Integer 0 if all lines have been sorted

Effect		: 	Sort the data member of an object with given

Size and algorithm.

The user can choose to sort the data according to increasing or decreasing orders.

Method Name	:	Output

Class		:	DataStorage

Input		:	Size of block to be output

Output	:	Integer 1 if there is more lines to be output

				Integer 0 if all lines have been output

Effect		:	None

Method Name	:	Shifter

Class		:	Shifter

Input		:	1. The original text

				2. The array to store the shifted text

				3. Number of lines to be shifted

				4. Starting line to be shifted

				5. Number of lines generated after shifted

Output	:	None

Effect		: 	1. Construct an object of class Shifter

				2. Shift the text given the input

Method Name	:	Output

Class		:	Shifter

Input		:	File descriptor or standard output

Output	:	None

Effect		:	None

Method Name	:	Sorter

Class		:	Sorter

Input		:	1. The original text

				2. Number of lines to be sorted

				3. Starting line to be sorted

				4. Function used to decide the order of sorting

				5. Flag indicating whether modify the original

			 	 text or not.

Output	:	None

Effect		: 	1. Construct an object of class Sorter

				2. Sort the text given the input

Method Name	:	Output

Class		:	Sorter

Input		:	File descriptor or standard output

Output	:	None

Effect		:	None

25
39

